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The influence of the pulsations of the pressure gradient on baromembrane processes is considered. Formulas
for calculation of the optimum pulsation frequency are given.

Problems on the limitedness of raw-material resources and on environmental contamination have become in-
creasingly more pressing at present. Therefore, one of the most important scientific and technical problems faced by
modern industry is the creation, development, and introduction of new high-efficiency and environmentally safe en-
ergy- and resource-conserving technologies. Such requirements are met to a large extent by membrane processes. A
highly important place among them is occupied by baromembrane processes which include the processes of reverse os-
mosis, ultrafiltration, and microfiltration that are similar in their physical essence and instrument implementation.
Alongside the traditional methods and in combination with them, these methods, as the most promising ones, are
widely used for cleaning, separation, and concentration of solutions and gas mixtures of different kinds, since the num-
ber of specific technological problems solved with these methods has steadily grown [1].

However, as experience shows, the capacity of membrane devices for separation of a given solution largely
depends not only on the use of one type of membrane or another and the structural features of filtering elements but
also on the conditions of the process.

Most of the membrane units manufactured for the indicated purposes at present represent devices of the flow
type in which the liquid components to be separated move on a closed-circuit basis in a channel (membrane element)
formed by osmotic (semipermeable) membranes under the action of the pressure gradient produced at the ends of the
channel. Due to the constant outflow of the low-molecular-weight fractions of the solution (solvent) through the os-
motic membranes, the concentration of other fractions (dissolved substances) on the membrane surface gradually in-
creases. This phenomenon has been called concentration polarization and is one of the main reasons why the capacity
of membrane devices drops. Furthermore, it is noteworthy that, in ultrafiltration, concentration polarization can fre-
quently lead to the formation of an impermeable gel layer on the membrane surface. Unlike the concentration-polari-
zation layer, this layer exhibits a much higher resistance to the processes of mass transfer, comparable to the resistance
of the membrane itself. Finally, separation of solutions virtually ceases on this portion of the membrane.

The membrane element and the processes in it are presented diagrammatically in Fig. 1. The element consists
of a porous structure 1 determining the geometric shape of the membrane element; membrane 2 is fixed on the inside
of the porous structure. In the diagram, the directions of flows are denoted by arrows. The formed concentration-po-
larization layer 3, becoming, as has been noted, the gel layer 4 in ultrafiltration, is also shown.

There are a number of methods allowing partial reduction in the influence of concentration polarization. This
is attained, for example, by increasing the velocity of liquid flow in the intermembrane space, increasing the tempera-
ture of the solution to be separated, turbulizing the flow with vortex generators of different kinds, placed in the inter-
membrane space, introducing a certain number of solid particles or spheres up to 0.5 mm in diameter from a material
with a density similar to that of the solution into the flow, etc. The above methods necessitate additional energy ex-
penditure to circulate the solution in the circuit of the unit and have a limited field of application, as a rule. In par-
ticular, it is not necessarily acceptable or possible to increase the temperature, whereas the employment of vortex
generators leads to an increase in the distance between the membranes, which decreases their working surface and,
moreover, makes the structure of the membrane elements themselves much more complicated [1, 2].
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A simple, reliable, and efficient method (easily realizable technically) for controlling concentration polarization
is the organization of a pulsating liquid flow in the intermembrane space, caused by the imposition of a harmonic
component on the constant pressure difference. A simplified diagram of the setup on which such an operating regime
can be reproduced is shown in Fig. 2. The setup operates as follows: the starting solution from tank 2 arrives at pump
1, which feeds it to the membrane module 4. After the separation of the filtrate, which is collected in tank 3, the
major portion of the solution is recycled to the tank 2 for further separation. The required pulsation frequency of the
pressure gradient is set with the electromagnetic valve 5, periodically partially covering pipeline 6 in front of the
membrane module 4.

Experimental data on the ultrafiltration of grape juice that were obtained on a laboratory setup with the use
of a pulsating regime have been given in [3]. The results of these experiments have shown that the imposition of pres-
sure-gradient pulsations substantially improves the capacity of the setup as compared to the case of separation without
pulsations (approximately 1.35–1.40 times). Furthermore, it is also clear from them that there is a pulsation frequency
at which the capacity attains its maximum. Analogous results are available in [4, 5]. In [5], an experiment on filtration
with the use of pulsations of a sucrose solution by the reverse-osmosis method has been presented.

However, theoretical conclusions of any value on determination of the optimum pulsation frequency enabling
one to maximize the reduction in the phenomenon of concentration polarization have been absent until the present
time. In this work, we consider the solution of this problem. We write the formulation of the problem for plane-cham-
ber membrane devices. They include apparatuses consisting of plane (sheet-type) membranes laid on both sides of a
porous material (drainage plate) or prepared directly on the surface of a porous plate. Let a liquid move in a plane
symmetric channel of length L and height 2h under the action of a constant pressure difference on which small pulsa-
tions are imposed. The selectivity of the membranes will be considered to be ideal, and liquid flow in the channel will
be considered to be steady-state. Then the system of equations describing this process and including the equations of
motion, continuity, and convective diffusion has the form
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Fig. 1. Diagram of the membrane element: 1) porous base of the membrane; 2)
membrane proper; 3) concentration-polarization layer; 4) gel layer.
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Since, from Eq. (2), it is evident that P is independent of y, for the pressure gradient, in accordance with the
requirement of imposition of pulsations, we have

∂P (x, t)
∂x

 = 
∂P (x)

∂x
 − A sin ωt .

(9)

Formulation of the problem for a plane channel with one permeable surface is analogous to (1)–(9) but, in-
stead of conditions (6), we must write

u y=2h
 = 0 ,   v y=2h

 = 0 . (10)

Devices of this type may include roll-type membrane elements that are widely used for cleaning of solutions by the
reverse-osmosis method. Considerable portions with one permeable surface also exist in devices with two permeable
surfaces [1].

By virtue of the linearity of the equations, the pulsating liquid flow in the intermembrane space can be con-
sidered as a set of two motions: the motion caused by the constant component of the pressure difference and the os-

Fig. 2. Diagram of the setup: 1) pump; 2) tank for the starting solution; 3)
tank for collection of the filtrate; 4) membrane module; 5) electromagnetic
valve; 6) connecting pipelines.

804



cillating motion due to the harmonic component; in this case we have ∂P(x)/∂x >> A. This enables us to analyze the
processes in the channel caused by each individual motion. Thus, we can assume that the outflow of a part of the liq-
uid (solvent) through the osmotic membrane is determined just by the constant component of the pressure difference.
Consequently, the transmembrane velocity characterizing it remains constant for a fairly long time interval (as com-
pared to the pulsation period), i.e., V

~
 = const. Since the value of the transmembrane flow is low as compared to the

value of the main flow directed along the channel axis, the first flow has been disregarded, as a rule, in description
of the pulsating motion of solutions [3]. It is precisely this flow, however, that is mainly responsible for the occur-
rence of the phenomenon of concentration polarization (the above phenomenon is not observed in the absence of this
flow). This means that for a more accurate determination of the velocity profile we cannot disregard this factor (the
second condition from (5)). On the basis of what has been said above, we can obtain expressions for the thickness of
the concentration-polarization layer and for the concentration of dissolved substances on the membrane surface directly
from the system of equations (1)–(4) with boundary conditions (5)–(8), setting the pulsation frequency ω equal to zero.
Then the process becomes steady-state and the system of equations (1)–(4) describing it is simplified, since the terms
containing time derivatives drop out and the pressure gradient of (9) loses its dependence on time. A solution (based
on the semiintegral approach) of this system for the case in question has been proposed in [6, 7]. Therefore, without
resorting to the calculations available there, we write the final formulas to compute the quantities of interest, which
have been represented in [6, 7] in dimensionless form:

∆ = 
ln θw

Pe V
 , (11)

for the thickness of the concentration-polarization layer and

θw − ln θw − 
1
2
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2
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2
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2
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 , (12)

for the concentration of dissolved substances on the membrane surface, where Pe = U0h ⁄ D is the diffusion Pe′clet
number, ∆ = ∆

~
 ⁄ h, θw = Cw

 ⁄ C0, V = V
~ ⁄ U0, and ξ = x/h (throughout the text, the quantities having dimensions and

notation symbols identical to those of the corresponding dimensional quantities have a D sign above).
According to [8], for a plane channel with one permeable surface the thickness of the polarization-concentra-

tion layer will also be determined by expression (11), whereas for the concentration of dissolved substances on the
membrane surface we have

θw − ln θw − 
1
2

 ln
2
 θw = 1 + 

Vξ Pe
2
 V

2

3 

1 − 

1
2

 Vξ



 . (13)

Thus, the main contribution to the formation of the concentration-polarization layer is made by the constant
component of the pressure gradient. The pulsating component in turn causes a shear viscous wave to form at the mem-
brane surface [9, 10]. This results in a periodic transfer of solution layers at the membrane surface from the region
with a higher concentration to the region with a low concentration and conversely. Thus, the action of convective dif-
fusion aimed at destroying the concentration-polarization layer will be more intense. The layer thickness to which vi-
brations of the liquid layer penetrate depend on the frequency and the kinematic viscosity of the solution to be
separated. This relationship has been determined in a number of works, for example, in [9, 10], and has the form

δ
~
 D √ ν

ω
 . (14)

It is correctly assumed that the influence of the pulsations will be the largest when the thickness of the con-
centration-polarization layer and the penetration depth of the shear viscous wave are quantities of the same order of
magnitude, i.e.,
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∆ D δ , (15)

where δ = δ
~

 ⁄ h.
Selecting, as ∆, the maximum value of this quantity (it will be attained for ξ = L/h) and returning to dimen-

sional quantities for the convenience of employment of final formulas in practical calculations, after the corresponding
substitution, we can calculate from (15) the optimum frequency of the process:
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It is clear that formula (16) will also hold for the plane channel with one permeable surface. In this case, in-
stead of (17), we must determine the concentration of dissolved substances on the membrane surface in accordance
with (13) from the equation
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Relations (16)–(18) yield that the optimum frequency of pressure pulsations in the plane channel depends on
both certain physical properties of the solution to be separated (diffusion coefficient of a dissolved substance and co-
efficient of kinematic viscosity of the solution) and the conditions of the process (velocity of the main flow and trans-
membrane velocity) and the geometric parameters of the selected membrane element (length and half-height of the
channel). Substitution of the characteristic values of the above quantities into (16) and (17) enables us to evaluate

ωopt; according to this evaluation, we have ω D 100–102 Hz. For the case where 
Cw

C0
 >> ln 

Cw
C0

 (this case is inherent in

low rates of ultrafiltration and reverse osmosis) (dimensionless parameter PeV D 103), the calculations are substantially
simplified, and we can write (16) and (17) in the form of one formula:
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Another popular channel shape employed in membrane elements is a cylindrical shape (tubular and hollow-
fiber membrane elements). The solution of an analogous problem for a cylindrical channel is available in [11] and also
leads to formula (16). The concentration of dissolved substances on the membrane surface should be sought from the
equation
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where R is the channel radius.
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Thus, knowing the geometric parameters of the membrane elements and the physical properties of the liquid
solutions or gas mixtures to be separated, we can find the optimum frequency of pulsations of the pressure gradient,
at which the capacity of the setup is the highest.

Example. Let us determine the optimum frequency of the process for an aqueous solution of sucrose in the

experimental setup described in [5]. The sucrose solution with a coefficient of kinematic viscosity of ν = 10−6 m2/sec

and a diffusion coefficient of D = 0.45⋅10−9 m2/sec moves in the pulsating regime in a channel of length L = 2.20 m

and radius R = 3.23⋅10−3 with an average velocity of U0 = 1.48⋅10−1 m/sec. The value of the transmembrane velocity

is V
~

 = 2.22⋅10−6 m/sec. Substituting these data into formula (20), we find 
Cw

C0
 − ln 

Cw
C0

 − 
1
2

 ln2 
Cw
C0

 C 1.53. Hence by the

iteration method we obtain ln2 
Cw

C0
 C 1.70. Substituting this value into (16), we compute the optimum frequency of the

process ωopt C 3 Hz, which is in satisfactory agreement with the result of the experiment.

NOTATION

A, pulsation amplitude; C, concentration of a dissolved substance; C0, concentration of a dissolved substance
at the channel inlet; Cw, concentration of a dissolved substance on the membrane; D, diffusion coefficient of a dis-
solved substance; h, half-height; L, length; P, pressure in the channel; t, time; V

~
, transmembrane velocity; U0, average

velocity of the flow at the channel inlet; u and v, components of the vector of velocity of the flow; ρ, density of the
solution; ν, coefficient of kinematic viscosity of the solution; ω, pulsation frequency; ωopt, optimum pulsation fre-
quency. Subscripts: w, value of the quantity on the membrane surface; opt, optimum.
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